

Last updated: March 21, 2022

Molecular Biology and Genetic Engineering A

80-242-01, 80-242-10

Prof. Doron Ginsberg and Prof. Tamar Gershon

doron.ginsberg@biu.ac.il tamar.gershon@biu.ac.il

Academic year: 2021-2022 Semester: 2nd Hours/credits: 2 hours lecture + 2 hours exercise / 2 credits

Mandatory

Prerequisites: None

Year in program & how often given, if relevant: 2nd year undergraduate course given once a year

Course Overview – Short abstract: Review of techniques and basic methodologies that are used by molecular biologists.

Learning outcomes – short descriptions: The course aims to provide students with a basic understanding of fundamental molecular biology techniques and their applications.

Assessment: Coursework and Grade structure: 75% - final exam, 25% - exercises and final exercise assignment. Students must get 60 or more in the final exam in order to pass the course.

Week-by-Week content, assignments and reading

Lesson #	Subject	
1	Introduction to molecular biology and genetic	
	engineering, reminder of the central dogma of	
	molecular biology,	

	DNA - restriction enzymes, separation of DNA	
	molecules using gel electrophoresis	
2	cloning, plasmids, expression vectors	
3	hybridization of nucleic acids - DNA & RNA in	
	situ hybridization, spectral karyotyping,	
	Southern blot, Northern blot, probe labeling,	
1	DNA sequencing - dideoxy sequencing	
4	pyrosequencing ion torrent-semiconductor	
	sequencing, Illumina sequencing, SMRT	
	sequencing, nanopore sequencing	
5	PCR	
6	RNA - Reverse transcription-PCR, Real-Time	
	PCR, DNA microarray, RNA-seq and	
	comparison of methods for the analysis of gene	
	expression	
7	Proteins - separation of proteins using one	
	dimensional SDS-PAGE, 2D gel	
0	antibodies antibody dependence	
0	immunostaining western blot	
0	immunoprocipitation (IP) co IP opitopo	
9	tagging fluorescent tagging and applications of	
	fluorescent proteins. FRET	
10	characterization of protein-protein interactions	
	(GST-pull down, Yeast Two-Hybrid), Protein	
	microarray	
11	working with cells - cell separation, growing	
	cells in culture, FACS, laser microdissection,	
	bacterial transformation, introduction of nucleic	
	acids into mammalian cells, transient and	
12	reporter genes site-directed mutagenesis	
12	analysis of protein-DNA interactions (DNA	
	affinity chromatography, EMSA, ChIP, DNA	
	footprinting)	
13	transgenic mice, gene inactivation: dominant	
	negative, RNAi, generation of knock-out mice,	
	knock in	

Bibliography:

Chapter 8, Molecular Biology of the Cell (6th Edition) by Alberts, Johnson, Lewis, Morgan, Raff, Roberts and Walter. Garland Science