

Last updated: March 17th 2022

Biochemistry II 80-202-01/10

Prof. Eitan Okun <u>eitan.okun@biu.ac.il</u> Dr. Nissan Issachar <u>nissan.yissachar@biu.ac.il</u> Dr. Moran Dvela <u>dvelamo@gmail.com</u> Dr. Yoav Paz <u>yoav.paas@biu.ac.il</u>

Academic year: 2021-2022 Semester: B Hours/credits: 4 hours / 2 credits

Mandatory

Prerequisites: Introduction to biochemistry, Biochemistry A

Year in program: 2nd year

Course Overview – Short abstract:

This course teaches the biochemistry of energy metabolism and its underlying regulatory elements, including hormonal regulation. We mainly focus on Carbohydrate metabolism, Fat metabolism, protein synthesis and related metabolic disorders. Among the different topics are: (1) The generation of ATP - from the Krebs cycle to oxidative phosphorylation. The biological structure of the membrane and its function in transport and cell signaling. Catabolism of fats for the process of energy production and the formation of fatty acids; (2) Metabolism of nitrogenous compounds; ammonia consumption for the biogenesis of organic compounds containing nitrogen; synthesis of amino acids; degradation of proteins and amino acids; metabolism of porphyrins and neurotransmitters; nucleotide metabolism; (3) Understanding the major metabolic pathway in the body - gluconeogenesis. Reciprocity between the various organs in the body in relation to utilization and preservation of energy. The extracellular signaling pathways and hormones involved in these processes

Assessment: Final test with multiple questions exam

Week-by-Week content, assignments and reading

Part	Subject
1. Dr. Moran Dvela	Introduction to Bioenergetics, Carbohydrates
	structure
	Glycoconjugates: function, importance to cellular
	biology and research strategies
	Introduction to cellular respiration, Lactic acid and
	Ethanol fermentation
	Glycolysis: main principles and reactions
	Glycolysis regulation, Pyruvate Dehydrogenase
	complex: reactions and regulation
	Krebs cycle: main principles and reactions
	Krebs cycle regulation and integration of the cellular
	respiration pathways
2. Dr. Nissan Yissachar	Oxidative phosphorylation and electron transport
	chain
	Oxidative phosphorylation and electron transport
	chain
	Oxidative phosphorylation and electron transport
	chain
	Membrane structure and function: part 1
	Membrane structure and function: part 1 - continue
	Membrane structure and function: part 2
	Lipid biosynthesis (fat storage, lipoproteins
	trafficking in the circulation, fatty acids activation,
	carnitine transport, fatty acids oxidation
	Lipid biosynthesis / lipid catabolism: Par
	Lipid catabolism: Part 2
3. Dr. Yoav Paz	Biosynthesis and recycling of nitrogen-containing
	compounds.
	Biogenesis of organic nitrogen and metabolism of
	amino acids.
	Metabolism of amino acids - continuation.
	Protein recycling and breakdown of amino acids;
	metabolism of the breakdown products of amino
	acids.
	Porphyrin metabolism, Heme, neurotransmitters,
	and nucleotides.
	Metabolism of nucleotides - <i>continuation</i> .
4. Prof. Eitan Okun	Gluconeogenesis: Substrates, enzymes, regulation
	Glycogen synthesis and breakdown

The Cori and Ammonia cycles, Lactate metabolism
Metabolic fueling of the brain. Caffeine and energy
metabolism
Coordinating energy utilization in different body
organs, energy use under different physiological
states such as exercise and fasting as well as
pathologies such as diabetes. Mechanism of action
of diabetes drugs
Regulation of metabolism by Hormones, AMPK,
mTOR, Sirtuins
Signal transduction mechanisms of metabolism-
related hormones, autophagy

Required text:

Textbook: Biochemistry, 4th Edition, Mathews C., van Holde K., Appling D. & Anthony-Cahill S.

Part 1: Most of the lecture topics are based on chapters 9, 13, and 14 of the course textbook; the rest is from articles distributed throughout the lectures.

Part 2: Chapters 10, 15, 18, and 19 of the course's textbook.

Part 3: Chapters 20-22 of the course's textbook.

Part 4: Chapters 16, 18, and 23 of the course's textbook.